SAND OVER ACIDIC CLAY

General Description: Moderately deep loose sand, sharply overlying a yellow, red and brown coarsely structured clay.

Landform: Rolling low hills and

prominent crests. Slope range is 10% to 25%

Substrate: Sandy clays (weakly

indurated in places), deposited in ancient glacial

valleys

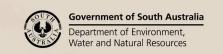
Vegetation: Pink gum (Eucalyptus

fasciculosa) woodland

Type Site: Site No.: CH006 1:50,000 mapsheet: 6527-2 (Yankalilla)

Hundred:YankalillaEasting:261500Section:1155Northing:6068900

Sampling date: 30/01/92 Annual Rainfall: 635 mm average


Midslope of prominent crest, 14% slope. Loose surface, no stones.

Soil Description:

Depth (cm)	Description
0-10	Dark greyish brown soft sand. Clear to:
10-22	Brown soft light loamy sand. Gradual to:
22-75	White soft sand. Sharp to:
75-85	Red and yellowish red firm strongly coarse columnar medium heavy clay. Gradual to:
85-130	Greyish brown, red and yellowish brown, firm, weakly coarse prismatic medium heavy clay. Diffuse to:
130-170	Light yellowish brown, red and yellow, firm massive sandy medium clay. Gradual to:
170-200	Pale yellow, greyish brown and brownish yellow firm massive sandy clay.

Classification: Bleached-Sodic, Natric, Red Kurosol; very thick, non-gravelly, sandy / clayey, very deep

Summary of Properties

Drainage: Moderately well to well. Soil may remain wet for a few days to a week.

Fertility: Low, due to thickness of sand with low nutrient retention capacity, as indicated by the

very low cation exchange capacities of the upper 75 cm. Calcium, magnesium and

potassium are all low, as are phosphorus and copper.

pH: Acidic to strongly acidic throughout. Lime and dolomite are required to correct the

problem.

Rooting Depth: 110 cm at type site. Varies according to depth of sand. Root density is low throughout.

Barriers to root growth:

Physical: Tough clay subsoil, caused by moderately high exchangeable sodium and magnesium

levels.

Chemical: Acidity throughout profile and low fertility.

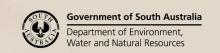
Waterholding capacity: 100 - 120 mm in rootzone (moderately high). Depends on depth of sand.

Seedling emergence: Good, but water repellence may be a problem in places.

Workability: Good.

Erosion potential:

Water: Moderate to high, depending on depth of sand.


Wind: High due to deep, loose, sandy surface.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	%	Avail. P mg/kg	Avail. K		Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol (+)/kg	Exc	ESP				
							mg/kg	66			Cu	Fe	Mn	Zn	() // 16	Ca	Mg	Na	K	
0-10	5.5	5.0	0	0.07	0.6	0.9	18	140	43	0.3	< 0.1	35	9.5	1.4	2.6	1.5	0.5	0.1	0.2	4
10-22	4.7	4.2	0	0.04	0.2	0.1	9	32	6	0.2	< 0.1	28	3.3	< 0.1	1.3	<0.4	<0.2	<0.1	0.1	ns
22-75	5.1	4.7	0	0.04	0.1	0.0	8	33	7	< 0.1	< 0.1	13	0.9	< 0.1	1.0	<0.4	<0.2	0.1	.05	ns
75-85	5.1	4.1	0	0.06	0.1	0.5	4	250	14	1.1	< 0.1	33	<0.5	<0.1	18.3	3.4	8.7	1.3	0.6	7
85-130	5.2	4.0	0	0.05	0.1	0.3	5	160	14	0.4	< 0.1	25	< 0.5	< 0.1	15.3	2.7	7.1	1.2	0.4	8
130-170	5.3	4.1	0	0.05	0.1	0.2	29	240	13	0.8	< 0.1	23	< 0.5	< 0.1	13.4	2.3	6.5	1.3	0.3	10
170-200	5.2	4.1	0	0.06	0.4	0.1	6	130	23	0.6	0.1	9	< 0.5	< 0.1	8.8	2.0	5.0	1.3	0.2	15

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

Further information: DEWNR Soil and Land Program

