SHALLOW CALCAREOUS SANDY LOAM

General Description: Highly calcareous sandy to loamy surface soil, shallow over rubbly or

sheet calcrete, grading to sandstone

Landform: Undulating to rolling low

> hills, with common outcrops of silcrete and calcrete, and associated surface stones.

Substrate: Calcreted sandstones of

Tertiary age.

Vegetation:

Type Site:

Site No.: CU002 1:50,000 mapsheet: 6531-2 (Gladstone)

Hundred: Narridy Easting: 254750 6299900 Section: 73 Northing:

21/02/1992 Annual rainfall: 480 mm average Sampling date

Upper slope / crest of undulating low hills, slope 2%. Firm surface with 20% sandstone, calcrete

and quartz stones (up to 6 cm) on surface.

Soil Description:

Depth (cm) Description

0 - 13Dark brown moderately granular very highly

calcareous light sandy clay loam with less than 2%

fine calcrete nodules. Abrupt to:

13-17 Brown massive very highly calcareous light sandy

clay loam with 20-50% fine calcrete nodules.

Abrupt to:

17-33 Very pale brown very highly calcareous light clay

loam with more than 50% fine calcrete nodules

(Class III C carbonate layer). Abrupt to:

33-40 Broken calcrete pan. Clear to:

40-120 Weathering sandstone with abundant fine lime

leached in from above.

Hypervescent, Petrocalcic, Lithocalcic Calcarosol; medium, gravelly, loamy / clay loamy, shallow **Classification:**

Summary of Properties

Drainage: Rapid. Soil never wet for more than a few hours.

Fertility: Fair. Low clay content limits nutrient retention capacity, and high lime content reduces

availability of some nutrients. Maintenance of organic carbon levels above 1% is

essential.

pH: Alkaline in surface; strongly alkaline with depth.

Rooting depth: 33 cm at type site. Limited by calcrete pan and shallow rock.

Barriers to root growth:

Physical: Hard rock at shallow depth restricts depth to which roots can penetrate.

Chemical: High alkalinity.

Waterholding capacity: 50 mm in rootzone (low). Varies depending on amount of rubble and depth to rock.

Workability: Good, except where heavy stone is within cultivation depth, or surface stone cover

exceeds 20%. Soil structure is not a problem due to high surface carbonate (CaCO₃)

levels.

Seedling establishment: Good, provided that surface organic matter levels are maintained.

Erosion potential:

Water: Low, due to gentle slope and high soil infiltration rates.

Wind: Low, unless heavily overgrazed.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	%	Avail. P	Avail. K mg/kg	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol (+)/kg	Exchangeable Cations cmol(+)/kg				ESP	
											Cu	Fe	Mn	Zn	() , 8	Ca	Mg	Na	K	
Paddock	8.7	8.0	17.6	0.14	-	1.00	26	270	-	-	0.58	1.5	4.0	0.27	-	-	-	-	-	-
0-13	8.5	7.8	8.7	0.16	1.0	1.31	41	410	-	-	0.59	1.6	7.5	0.44	16.5	11.9	1.36	0.09	1.18	0.5
13-17	-	-	-	ı	ı	-	-	-	-	1	ı	1	1	-	ı	1	ı	-	-	ı
17-33	9.0	8.2	33.5	0.10	0.3	0.56	4	35	-	1.0	0.62	0.6	0.5	0.07	6.7	6.30	1.50	0.10	0.15	1.5
33-40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40-120	9.1	8.4	29.9	0.12	0.4	0.23	2	30	-	0.9	0.21	0.2	0.2	0.01	7.3	4.45	3.85	0.23	0.11	3.2

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

Further information: DEWNR Soil and Land Program

