HIGHLY CALCAREOUS LOAMY SAND

(Haslam / Wookata soil)

General Description: Highly calcareous loamy sand becoming slightly more clayey and

very highly calcareous with variable rubbly carbonate at depth

Landform: Low rises with sand

spreads.

Substrate: Very highly calcareous

windblown sand over finer

grained Woorinen Formation sediments

Vegetation: Mallee.

Type Site: Site No.: EC081 1:50,000 mapsheet: 5931-1 (Palabie)

Hundred:PalabieEasting:540610Section:7Northing:6329200

Sampling date: 31/3/1993 Annual rainfall: 330 mm average

Upper slope of low rise, 3% slope. Loose surface with no stones.

Soil Description:

Depth (cm)	Description
0-10	Brown soft very highly calcareous light sandy loam. Gradual to:
10-30	Light brown soft very highly calcareous loamy sand with 10-20% carbonate concretions. Gradual to:
30-50	Light brown soft very highly calcareous loamy sand with 2-10% carbonate concretions. Clear to:
50-64	Light brown soft very highly calcareous loamy fine sand with 20-50% carbonate concretions (20-60 mm). Clear to:
64-92	Pink soft very highly calcareous sandy loam with minor carbonate concretions. Gradual to:
92-150	Pink soft very highly calcareous sandy clay loam with 2-10% carbonate concretions (2-20 mm).

Classification: Hypervescent, Regolithic, Supracalcic Calcarosol; medium, non-gravelly, sandy / loamy, deep

Summary of Properties

Drainage: Rapidly drained. The soil never remains wet for more than a few hours.

Fertility: Inherent fertility is low. High carbonate content to the surface reduces availability of

phosphorus and trace elements, and low clay content restricts nutrient retention capacity. Regular phosphate applications are necessary - levels are high at sampling site. Nitrogen status depends on legume content of pastures and cropping history. Copper, zinc and manganese deficiencies may be expected from time to time - copper

levels are low at sampling site. Organic carbon concentrations are high.

pH: Alkaline at the surface, strongly alkaline with depth.

Rooting depth: 30 cm in pit.

Barriers to root growth:

Physical: There are no physical barriers.

Chemical: High pH and high sodicity from 64 cm limit deeper root growth, but low nutrient

status and retention capacity below the upper 10 cm is limiting root depth.

Waterholding capacity: Approximately 50 mm in the potential rootzone.

Seedling emergence: Satisfactory, although surface soil is water repellent in some seasons, reducing

establishment.

Workability: Loose surface is easily worked.

Erosion Potential:

Water: Low.

Wind: Moderate to moderately high.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	5	EC1:5 dS/m	ECe dS/m	%	P		mg/kg	Boron mg/kg	0 0				cmol	Exchangeable Cations cmol(+)/kg				ESP
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
0-10	8.6	8.1	14	0.11	0.61	1.0	45	250	-	1.6	0.18	1.9	3.70	1.00	7.5	6.14	0.78	0.08	0.57	1.1
10-30	8.9	8.2	26	0.10	0.38	0.5	3	270	-	2.0	0.24	1.4	1.40	0.26	6.3	5.80	1.14	0.10	0.65	1.6
30-50	9.0	8.3	34	0.12	0.44	-	3	240	-	1.4	0.22	1.0	0.67	0.25	6.4	4.20	2.11	0.15	0.58	2.3
50-64	9.4	8.6	38	0.17	0.67	-	3	130	-	4.2	0.16	1.2	0.41	0.43	6.1	2.23	4.06	0.60	0.25	9.8
64-92	9.8	8.6	34	0.28	1.40	1	<2	180	-	12	0.19	1.5	0.47	0.39	5.1	0.99	3.34	1.47	0.43	28.8
92-150	9.9	8.5	32	0.54	4.93	-	<2	230	-	12	0.21	1.4	0.50	0.65	5.0	0.94	2.29	1.91	0.57	38.2

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

Further information: <u>DEWNR Soil and Land Program</u>

