SHALLOW SANDY LOAM OVER RED CLAY ON ROCK

(Shallow Cleve – Mangalo soil)

General Description: Hard gravelly sandy loam over a well structured red clay, calcareous

with depth over weathering basement rock within 100 cm

Landform: Undulating rises and low

hills.

Substrate: Weathering schist, mantled

by fine wind blown

carbonates.

Vegetation:

Type Site: Site No.: EE065 1:50,000 mapsheet: 6230-4 (Mangalo)

Hundred: Mann Easting: 639210 Section: Northing: 6270830

Sampling date: 20/1/1993 Annual rainfall: 375 mm average

Midslope of an undulating low hill, 8% slope. Hard surface with 10-20% schist stones.

Soil Description:

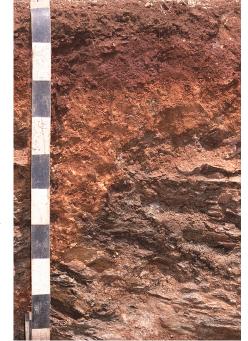
Depth (cm) Description

0-6 Dark brown firm sandy loam with moderate fine

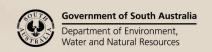
subangular blocky structure and 2-10% quartz

gravel. Abrupt to:

6-20 Dark red firm medium clay with strong fine


subangular blocky structure. Abrupt to:

20-36 Yellowish red soft very highly calcareous medium


clay with weak fine subangular blocky structure.

Abrupt to:

Weathering schist.

Classification: Haplic, Hypercalcic, Red Chromosol; thin, gravelly, loamy / clayey, shallow

Summary of Properties

Drainage: Well drained. The soil rarely remains wet for more than a day or so following heavy

or prolonged rainfall.

Fertility: Inherent fertility is moderate, as indicated by the exchangeable cation data. Nutrient

retention capacity in the surface soil is moderately low (about 20% clay and suboptimal organic carbon levels), but shallow subsoil clay has high retention capacity. Regular phosphorus applications are needed - levels at sampling site are high. Nitrogen levels depend on legume content of pastures and cropping history. Trace element availability is not affected by soil conditions, and levels are adequate.

pH: Slightly alkaline at the surface, alkaline with depth.

Rooting depth: 36 cm in pit.

Barriers to root growth:

Physical: The underlying rock inhibits deeper root growth.

Chemical: There are no chemical barriers.

Waterholding capacity: Approximately 45 mm in the rootzone.

Seedling emergence: Fair. The hard setting sealing surface affects establishment in some seasons.

Workability: Fair, where structure is poor. Surface soil may shatter if worked too dry, and puddle if

worked too wet.

Erosion Potential:

Water: Moderate.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	_	EC1:5 dS/m		%	P	K	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)				cmol	Exchangeable Cations cmol(+)/kg				ESP
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
0-6	7.4	6.3	<1	0.11	0.60	0.9	40	290	-	2.2	0.44	37	32	0.57	10.0	5.82	2.48	0.23	0.51	2.3
6-20	7.6	6.9	2	0.16	0.53	0.6	6	130	-	2.6	0.46	24	14	0.19	25.9	18.62	4.51	0.45	0.38	1.7
20-36	8.6	7.9	40	0.15	0.45	0.4	5	120	-	2.2	0.62	7.5	3.6	0.16	17.3	14.05	3.41	0.49	0.32	2.8

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC

Further information: <u>DEWNR Soil and Land Program</u>

