SANDY LOAM OVER DISPERSIVE CLAY ON ROCK

(Hammat soil)

General Description: Sandy loam to loam over a red or yellowish brown coarse blocky clay,

sometimes calcareous with depth, grading to weathering basement

rock

Landform: Undulating to rolling low

hills.

Substrate: Schists and gneisses of the

Hutchison Group.

Vegetation:

Type Site: Site No.: EL143 50,000 mapsheet: 6029-2 (Koppio)

Hundred:KoppioEasting:586900Section:133Northing:6193800

Sampling date: 1982 Annual rainfall: 485 mm average

Mid slope in a landscape of undulating low hills, 15% slope.

Soil Description:

Depth (cm) Description

0-10 Dark brown sandy loam with granular structure

and 10-25% gneiss fragments (10-50 mm).

Gradual to:

Dark yellowish brown light sandy loam with

granular structure and 50-75% gneiss fragments

(10-50 mm). Gradual to:

23-30 Brown massive light sandy loam with 2-10%

gneiss fragments (10-50 mm). Abrupt to:

30-50 Dark yellowish brown mottled medium clay with

blocky structure and 2-10% gneiss fragments (10-

50 mm). Diffuse to:

50-110 Yellowish brown calcareous medium clay with

blocky structure and fine carbonate segregations

in pockets within weathered gneiss.

Classification: Calcic, Mottled-Mesonatric, Brown Sodosol; thick, gravelly, loamy / clayey, deep

Summary of Properties

Drainage: Moderately well to imperfectly drained. Water will perch on the clayey subsoil for a

week to several weeks following heavy or prolonged rainfall.

Fertility: Inherent fertility is moderate, as indicated by the exchangeable cation data. Nutrient

retention capacity is fair at the surface, but the subsoil has a large retention capacity. Phosphate levels are extremely low, and zinc and manganese concentrations in the

lower topsoil are low. Organic carbon levels are also sub-optimal.

pH: Neutral in the surface and upper subsoil, alkaline in the lower subsoil / weathering

rock layer.

Rooting depth: Not recorded. Estimate 50 cm in pit.

Barriers to root growth:

Physical: The clayey subsoil from 30 cm restricts root growth to some extent.

Chemical: There are no apparent chemical barriers apart from low trace element availability in

the subsoil.

Waterholding capacity: Approximately 65 mm in the rootzone.

Seedling emergence: Fair to satisfactory depending on the degree of hard setting.

Workability: Fair. Surface soil prone to setting hard; reducing time for effective cultivation.

Erosion Potential:

Water: Moderate to high.

Wind: Low.

Laboratory Data

Depth cm	Sand %	Silt %	Clay %	pH H ₂ O	pH CaC1 ₂	CO ₃	EC1:5 dS/m			P	Trace Elements mg/kg (DTPA)			cmol	Exchangeable Cations cmol(+)/kg				ESP	
										mg/kg	Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
0-10	79	9	12	7.7	-	0	0.05	0.86	1.24	3	1.92	32	10.0	0.52	11.0	4.7	1.80	0.26	0.40	2.4
10-23	83	8	9	6.8	-	0	0.04	0.88	0.67	2	0.88	30	2.6	0.40	6.5	2.6	1.10	0.21	0.24	3.2
23-30	82	9	9	6.9	-	0	0.03	0.55	0.27	2	0.28	22	0.2	0.12	4.1	1.4	0.99	0.11	0.15	2.7
30-50	41	4	55	7.2	-	1.5	0.18	1.06	-	-	1	ı		ı	30.0	7.7	12.0	4.50	1.10	15.0
50-110	-	-	-	-	-	-	-	-	-	-	1	-		1	-	-	-	-	-	-

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

Further information: <u>DEWNR Soil and Land Program</u>

