SANDY CLAY LOAM OVER DISPERSIVE RED CLAY

General Description: Sandy clay loam abruptly overlying a coarsely structured dispersive red clay, calcareous with depth

Landform: Flats between gently

undulating sandhills

Substrate: Fine and coarse grained

Tertiary sediments.

Vegetation: Mallee

Type Site: Site No.: MM031 1:50,000 mapsheet: 7027-4 (Karte)

Hundred: Kingsford Easting: 469050 Section: 2 Northing: 6116900

Sampling date: 15/11/1991 Annual rainfall: 315 mm average

Flat, with firm surface and no stones

Soil Description:

Depth (cm) Description

0-9 Reddish brown firm fine sandy clay loam.

Abrupt to:

9-22 Reddish brown hard medium clay with coarse

angular blocky structure. Clear to:

22-57 Yellowish red highly calcareous medium clay

with coarse angular blocky structure. Abrupt to:

57-76 Orange moderately calcareous massive sandy clay

loam. Clear to:

76-96 Orange with red and grey mottles light sandy clay

loam, with minor fine carbonate segregations.

Clear to:

96-137 Orange with red and grey mottles light sandy clay

loam. Diffuse to:

Orange with red and grey mottles sandy loam.

Gradual to:

167-195 Orange and grey loamy sand.

Classification: Calcic, Subnatric, Red Sodosol; thin, non-gravelly, clay loamy / clayey, moderate

Summary of Properties

Drainage: Moderately well drained. Water perches on the clayey subsoil for a week or so at a

time following heavy or prolonged rain.

Fertility: Inherent fertility is high as indicated by the exchangeable cation data. However,

phosphorus, nitrogen and zinc deficiencies are likely. Organic carbon levels are less

than the 1.3% which is achievable in this environment.

pH: Neutral at the surface, strongly alkaline with depth.

Rooting depth: 57 cm in pit.

Barriers to root growth:

Physical: The hard dispersive clayey subsoil restricts uniform root growth. The hard, massive

sandy substrate (from 57 cm) further impedes growth.

Chemical: High pH, sodicity and boron levels all contribute to poor root growth conditions at

moderate depth.

Waterholding capacity: 85 mm in rootzone.

Seedling emergence: Limitation due to hard setting and dispersive surface in places.

Workability: Fair due to tendency to hard setting - limited opportunities for cultivation without

damaging the soil.

Erosion Potential:

Water: Low.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	%	Avail. P mg/kg	Avail. K mg/kg	Boron mg/kg	5 5				CEC cmol	Exchangeable Cations cmol(+)/kg				ESP
										Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
Paddock	8.4	7.1	3.0	0.22	1.03	0.91	12	570	3.2	0.40	7.3	5.4	0.21	29.7	17.26	7.69	0.88	1.62	3.0
0-9	7.2	6.6	0.3	0.15	0.99	1.0	9.3	570	2.8	0.54	15	11	0.62	21.9	11.87	7.27	0.87	1.58	4.0
9-22	8.8	7.2	1.3	0.37	1.92	0.58	2.4	270	6.5	0.44	14	2.5	0.12	30.7	12.24	11.83	3.30	0.83	10.8
22-57	9.1	8.0	7.5	0.80	4.70	0.42	1.8	340	19	0.68	13	0.86	0.18	29.3	9.05	12.78	6.64	0.99	22.7
57-76	9.3	7.8	3.0	0.65	4.8	0.17	0.9	210	15	0.41	7.6	0.26	0.02	14.5	3.67	6.19	3.89	0.59	26.8
76-96	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
96-137	5.3	4.7	0.1	0.44	5.3	0.14	0.9	86	4.4	0.29	15	0.03	0.01	6.4	0.85	3.02	2.09	0.25	32.7
137-195	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

Further information: DEWNR Soil and Land Program

