DARK GREY CRACKING CLAY

General Description: Dark grey to black self-mulching and cracking clay

Landform:Elevated very gently
undulating plains and low
lying alluvial flats. Crabholes
(gilgai) are common.Substrate:Pleistocene clays
(Blanchetown Clay
equivalent)Vegetation:Open woodland of bulloak
and box

Type Site:	Site No.:	SE003	1:50,000 mapsheet:	7025-2 (Tatiara)			
	Hundred:	Tatiara	Easting:	480350			
	Section:	Racecourse	Northing:	5982050			
	Sampling date:	23/01/1991	Annual rainfall:	490 mm average			

Alluvial flat, 0% slope. Self-mulching, cracking surface.

Soil Description:

Depth (cm)	Description
0-2	Very dark grey strongly granular medium clay (self-mulching). Abrupt to:
2-20	Dark grey moderately subangular blocky medium clay. Gradual to:
20-40	Grey moderately subangular blocky medium heavy clay. Gradual to:
40-60	Dark grey moderately angular blocky moderately calcareous heavy clay. Gradual to:
60-100	Brownish grey strongly angular blocky, moderately calcareous heavy clay. Gradual to:
100-150	Light grey strongly angular blocky highly calcareous medium clay (Class I carbonate layer).

Classification: Epicalcareous-Endohypersodic, Self-mulching, Grey Vertosol; non-gravelly, medium fine / very fine, deep

Summary of Properties

Drainage:	Imperfectly drained. Soil may remain wet for some weeks, due to its high clay content and low lying position.							
Fertility:	Natural fertility is very high, as indicated by the CEC values throughout the soil. The only likely deficiency (apart from phosphorus - highly deficient at time of sampling - and nitrogen) is zinc, which is low at the type site and is commonly deficient on clay soils.							
pH:	Slightly alkaline at surface, strongly alkaline with depth.							
Rooting depth:	100 cm in pit.							
Barriers to root growth								
Physical:	No physical limitations apart from possible damage to roots from cracking. Waterlogging will retard root growth in wet years.							
Chemical:	Class I carbonate layer and excessive boron from 100 cm limit root growth.							
Waterholding capacity:	150 to 200 mm in rootzone (very high).							
Seedling emergence:	Good, provided that self-mulching surface is maintained.							
Workability:	Fair. Soil becomes sticky and boggy when wet.							
Erosion Potential:								
Water:	Low.							
Wind:	Low.							

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	Org.C	Avail. P mg/kg	Avail. K mg/kg	SO ₄ mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol	Exc	hangea cmol(ESP	Cl mg/kg			
											Cu	Fe	Mn	Zn	(),	Ca	Mg	Na	K		
0-20	7.9	7.8	<0.1	0.19	-	1.7	9	550	-	3.1	0.5	14.9	3.1	0.3	36.0	25.3	8.1	0.5	2.0	1	78
20-40	8.2	7.9	3.3	0.21	-	0.8	4	420	-	4.6	0.6	13.3	3.8	< 0.1	36.9	22.4	11.5	1.5	1.7	4	83
40-60	8.9	8.3	10.1	0.32	-	0.3	<2	440	-	10.4	0.7	9.1	1.6	< 0.1	38.2	16.9	15.1	4.4	1.8	12	74
60-100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
100-150	9.1	8.4	21.1	0.39	-	0.2	3	450	-	23.7	0.6	8.8	1.2	<0.1	39.2	12.4	16.7	7.3	1.9	19	87

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

Further information: <u>DEWNR Soil and Land Program</u>

