SANDY LOAM OVER RED CLAY

General Description:

Hard setting red brown loamy sand to clay loam overlying a well structured red clay subsoil, highly calcareous with depth.

1:50,000 sheet:	6627-2 (Milang)	Hundred:	Bremer
Annual rainfall:	475 mm	Sampling date:	22/03/91
Landform:	Midslope of alluvial fan, 1%	6 slope	
Surface:	Hard setting with no stones		

Soil Description:

Depth (cm)	Description	
0-18	Dark reddish brown hard massive light sandy loam. Clear to:	
18-23	Pink hard massive light sandy loam. Sharp to:	
23-36	Dark red well structured light medium clay. Clear to:	./1
36-55	Dark reddish brown light clay with more than 50% soft calcareous segregations. Gradual to:	
55-90	Very pale brown very highly calcareous, massive medium clay (Class I carbonate). Diffuse to:	
90-120	Dark brown and yellowish brown mottled medium clay with strong blocky structure and less than 10% soft calcareous segregations, decreasing with depth.	THE SAL

Classification: Bleached-Sodic, Hypercalcic, Red Chromosol; medium, non-gravelly, loamy / clayey, deep

Summary of Properties

Drainage	Moderately well drained. Soil may remain wet for up to one week.								
Fertility	High natural fertility, as indicated by the cation exchange capacity of the clay subsoil. However, acidification and cation leaching have reduced the fertility of the surface soil. Magnesium in particular, and calcium are low, as is zinc. Phosphorus levels are marginal.								
рН	Acidic in surface, grading to alkaline in deeper subsoil. This alkalinity reduces the availability of trace elements, especially zinc.								
Rooting depth	55 cm at type site, but low density below 36 cm.								
Barriers to root growth									
Physical:	Hard massive surface soil and firm, coarsely structured subsoil clay prevent optimal root distribution.								
Chemical:	Class I carbonate layer from 36 cm typically restricts root growth. There is no significan salinity and boron levels are not toxic.								
Water holding capacity	75 mm in root zone (moderately high). Dependent on depth to Class I carbonate.								
Seedling emergence	Fair due to tendency for surface to seal after rain. Increased surface organic matter levels will help to overcome this problem, as will gypsum to some extent.								
Workability	Fair due to poor structure of surface. Will shatter when dry and puddle when wet.								
Erosion potential									
Water:	Moderately low, due to flatness of the site. These soils are highly erodible on sloping ground due to the poorly structured surface.								
Wind:	Low to moderately low. Excessive working or trampling will pulverize soil, increasing erosion hazard.								

Laboratory Data

Depth cm	pH H2O	pH CaC1 ₂	CaCO3 %	EC1:5 dS/m	ECe dS/m	Org.C %	Р	Avail. K mg/kg		Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol (+)/kg	Exc	ESP				
							mg/Kg	III <u>6</u> /Kg			Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K	
0-18	5.3	5.3	-	0.12	-	1.0	26	540	65	0.5	0.5	83.7	6.0	0.1	5.2	3.6	0.6	0.1	0.7	2
18-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23-36	7.3	7.3	0.3	0.18	-	0.6	4	700	14	2.0	1.1	15.9	0.3	< 0.1	33.6	22.4	5.0	0.5	2.1	1
36-55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
55-90	8.4	7.9	35.0	0.17	-	0.3	<2	370	79	2.0	4.9	5.9	0.8	< 0.1	22.2	13.5	5.4	0.8	1.2	3
90-120	8.9	8.3	10.5	0.31	-	0.1	<2	590	69	5.0	0.4	4.5	0.5	< 0.1	21.8	7.6	8.9	2.9	1.7	13

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.