SAND OVER ACIDIC CLAY

Soil Description:

Depth (cm) Description
0-20 Dark grey soft loamy sand. Abrupt to:

20-32 Very pale brown soft sand. Clear to:

32-40 Yellowish brown soft loamy sand with 10% ortstein nodules. Abrupt to:

40-65 Yellowish brown, brown and red medium clay with strong polyhedral structure. Gradual to:

Yellowish brown, pale yellow and red fine sandy light clay with moderate blocky structure. Diffuse to:

Brownish yellow, pale yellow and red fine sandy clay loam with weak blocky structure (weathered
 sandstone).

Classification: Bleached, Mesotrophic, Brown Kurosol; thick, non-gravelly, sandy / clayey, deep

Summary of Properties

Drainage Well drained. soil is unlikely to remain wet for more than about a week.

Fertility Natural fertility is low, as indicated by the low CEC. This is due to the low clay

 content of the surface and the mineralogy of the clay in the subsoil. Levels of surface phosphorus, calcium, magnesium, potassium, sulphur and boron are low, but there is significant subsurface accumulation caused by leaching. Copper, manganese and iron also appear to be low. Leaching losses of nutrients are exacerbated by the acidity of the soil. Maintenance of neutral pH is critical for the fertility of this soil.$\mathbf{p H} \quad$ Acidic in surface, strongly acidic in subsoil, causing marginal aluminium toxicity, molybdenum deficiency and poor legume nodulation. Dolomitic lime is required.

Rooting depth $\quad 120 \mathrm{~cm}$ at type site, but roots below 65 cm are confined to sand filled cracks.

Barriers to root growth

Physical: None.
Chemical: Low pH (with possible aluminium toxicity) and low nutrient status.
Water holding capacity 150 mm in root zone (high), but only about 100 mm of this is available because of low root density below 65 cm .

Seedling emergence

Good, except where water repellence occurs.

Workability

Good.

Erosion Potential

$$
\begin{array}{ll}
\text { Water: } & \text { Moderately low due to thick, highly permeable surface soil. } \\
\text { Wind: } & \text { Moderate, due to loose sandy surface. }
\end{array}
$$

Laboratory Data

Depth cm	$\begin{gathered} \mathrm{pH} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{pH} \\ \mathrm{CaC1}_{2} \end{gathered}$	$\begin{gathered} \mathrm{CaCO}_{3} \\ \% \end{gathered}$	$\begin{aligned} & \text { EC1:5 } \\ & \text { dS/m } \end{aligned}$	$\begin{aligned} & \mathrm{ECe} \\ & \mathrm{dS} / \mathrm{m} \end{aligned}$	$\begin{array}{\|c} \text { Org.C } \\ \% \end{array}$	Avail. P mg/kg	Avail. K $\mathrm{mg} / \mathrm{kg}$	$\begin{aligned} & \mathrm{SO}_{4}-\mathrm{S} \\ & \mathrm{mg} / \mathrm{kg} \end{aligned}$	Boron $\mathrm{mg} / \mathrm{kg}$	Trace Elements mg/kg (DTPA)				CEC cmol (+)/kg	Exchangeable Cations$\mathrm{cmol}(+) / \mathrm{kg}$				ESP	ExtAl$\mathrm{mg} / \mathrm{kg}$
											Cu	Fe	Mn	Zn		Ca	Mg	Na	K		
Paddock	5.4	4.8	0	0.05	0.27	2.7	6	58	5.4	0.3	0.7	49	4.9	3.8	3.9	2.5	0.8	<0.1	0.15	na	2
											*1.1	*62	*14	*4.4							
0-20	5.1	4.4	0	0.04	0.13	1.2	<2	9	2.6	0.3	0.5	35	0.8	1.1	3.3	1.4	0.4	<0.1	0.05	na	2
20-32	4.9	4.3	0	0.03	0.08	0.2	20	17	1.1	0.5	0.2	65	<0.1	0.1	1.5	<0.4	<0.2	<0.1	0.05	na	2
32-40	4.9	4.3	0	0.04	0.09	0.6	100	83	1.6	0.4	0.3	206	0.1	0.2	2.9	0.7	0.3	<0.1	0.20	na	7
40-65	5.1	4.6	0	0.05	0.08	0.2	5	120	19	1.2	<0.1	10	<0.1	<0.1	6.3	2.2	2.7	0.12	0.32	1.9	<1
65-120	5.3	4.9	0	0.05	0.12	0.1	<2	41	22	1.0	<0.1	4	<0.1	<0.1	4.5	1.2	2.9	0.11	0.12	2.4	<1
120-180	5.0	4.4	0	0.04	0.12	0.1	<2	26	17	0.7	<0.1	4	<0.1	<0.1	3.3	1.1	2.3	0.13	0.11	na	1

Note: Paddock sample bulked from 20 cores ($0-10 \mathrm{~cm}$) taken around the pit.

* EDTA trace element analyses for "paddock" sample.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.
ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.

