SANDY LOAM OVER BROWN CLAY

General Description: Hard massive loamy sand to sandy clay loam, between 20 and 60 cm thick, sharply overlying a yellow, grey and brown mottled very firm blocky clay, sometimes calcareous with depth

pe Site:	Site No.:	CH072		
	1:50,000 sheet:	6627-4 (Noarlunga)	Hundred:	Kuitpo
	Annual rainfall:	830 mm	Sampling date:	24/11/94
	Landform:	Lower slope of a very gentl	y inclined alluvial fa	n, 2% slope
	Surface:	Hard setting with no stone		

Soil Description:

Depth (cm)	Description	
0-10	Dark greyish brown fine sandy loam with moderate granular structure. Abrupt to:	the state
10-25	Light grey fine sandy loam with rusty brown mottles and weak coarse prismatic structure. Clear to:	
25-45	Yellowish brown and greyish brown mottled medium heavy clay with weak very coarse prismatic, breaking to strong polyhedral structure. Gradual to:	
45-85	Yellowish brown, yellow and greyish brown mottled heavy clay with weak coarse prismatic, breaking to strong polyhedral structure. Gradual to:	
85-120	Olive brown and greyish brown mottled heavy clay with strong coarse lenticular structure and slickensides. Gradual to:	
120-155	Olive brown slightly calcareous heavy clay with strong coarse lenticular structure, slickensides and 2-10% soft and nodular carbonate segregations.	

Classification: Bleached-Vertic, Eutrophic, Brown Chromosol; medium, non-gravelly, loamy/clayey, deep

Summary of Properties

Drainage	Imperfect. The heavy clay subsoil has low permeability causing water to "perch", saturating the surface soil for weeks at a time.									
Fertility	Natural fertility is moderate as indicated by the exchangeable cation data, but note low levels in the subsurface layer. Higher surface levels are due to organic matter. Phosphorus and potassium are low. Sulphur and trace elements are adequate. The ratios of calcium, magnesium and potassium are satisfactory, although actual values are a little low.									
рН	Acidic at the surface. Lime or dolomitic lime should be applied to prevent pH falling lower. Alkaline at depth where calcium carbonate ("lime") is present.									
Rooting depth	120 cm in pit but few below 85 cm.									
Barriers to root growth										
Physical:	Poorly structured tight subsoil clay, waterlogging on top of clay.									
Chemical:	Low phosphorus and potassium. Aluminium is not at toxic levels.									
Water holding capacity	Approximately 120 mm in root zone, but not all available due to low root density.									
Seedling emergence	Fair, due to tendency for surface to seal over.									
Workability	Fair to good. If organic matter levels fall, this soil will have only a narrow moisture									
Erosion Potential	range over which it can be effectively worked.									
Water:	Low									
Wind:	Low									

Laboratory Data

Depth cm	pH H2O	pH CaC1 ₂	CO3 %	EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P	Avail. K	SO ₄ -S mg/kg	Boron mg/kg	Trace	e Elen (ED	nents r TA)	ng/kg	CEC cmol	Exc	hangea cmol(ESP	Ext Al		
							IIIg/kg I				Cu	Fe	Mn	Zn	(+)/Kg	Ca	Mg	Na	K		ш _б , к _б
Paddock	5.7	4.8	0	0.05	0.28	3.3	21	61	12.8	0.8	3.64	439	165	3.01	13.3	6.08	1.77	0.24	0.21	1.8	2
0-10	5.5	4.6	0	0.05	0.22	3.5	25	32	9.8	0.8	-	-	-	-	12.0	5.28	1.01	0.20	0.15	1.7	4
10-25	6.0	5.1	0	0.02	0.17	0.9	25	22	4.9	0.7	-	-	-	-	8.3	4.40	1.41	0.16	0.11	1.9	<1
25-45	5.5	4.9	0	0.08	0.21	0.6	8	109	170	2.9	-	-	-	-	30.5	9.74	11.75	1.08	0.54	3.5	<1
45-85	5.5	4.7	0	0.11	0.32	0.4	<4	121	81.2	3.2	-	-	-	-	31.2	8.63	12.84	1.61	0.55	5.2	<1
85-120	7.7	6.7	0.1	0.24	0.64	0.4	<4	111	108	3.8	-	-	-	-	33.3	11.06	13.54	3.56	0.39	10.7	
120-155	8.8	8.1	3.9	0.40	0.87	0.2	<4	114	43.6	5.0	-	-	-	-	29.2	10.94	12.06	3.92	0.35	13.4	

Note: Paddock sample bulked from 20 cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.