WET HIGHLY LEACHED SAND

General Description: Bleached sand with a dark brown weakly cemented subsoil and a water table within 100 cm

Landform: Gently undulating rises.

Substrate: Sand, usually windblown.

Vegetation:

Type Site: Site No.: CK006

1:50,000 sheet: 6326-3 (Vivonne) Hundred: Newland Annual rainfall: 600 mm Sampling date: 09/03/93 Landform: Valley flat between gently undulating rises, 1% slope

Surface: Soft with no stones. Water table at 95 cm.

Soil Description:

Depth (cm) Description

0-12 Black soft single grained light loamy sand. Clear

to:

12-30 White soft single grained sand. Diffuse to:

White soft single grained sand. Abrupt but

tongued (depth varies from 52 to 75 cm) boundary

to:

52-70 Ortstein pan (coffee rock) – moderately cemented

iron – organic pan in the upper 5 cm, over a dark reddish brown and strong brown firm massive clayey sand with 20-50% organic - aluminous -

ferruginous nodules (2-6 mm). Clear to:

70-95 Yellowish brown and dark brown soft massive

clayey sand with more than 50% ferruginous -

organic segregations.

95- Water table.

Classification: Parapanic, Humic/Humosesquic, Semiaquic Podosol; medium, non-gravelly, sandy/sandy,

deep

Summary of Properties

Drainage Poorly drained, due to shallow water table (95 cm at time of sampling - 9th March,

1993). The soil may remain wet for several months.

Fertility Natural fertility is very low, as indicated by the exchangeable cation data. Due to the

low clay content, nutrient retention capacity relies on high organic matter levels (2%

organic carbon minimum). Apart from nitrogen and phosphorus, this soil is susceptible to potassium, calcium, magnesium, sulphur, zinc, copper, manganese,

molybdenum and boron deficiencies.

pH Strongly acidic at surface, acidic with depth.

Rooting depth 70 cm in pit, but few roots below 30 cm.

Barriers to root growth

Physical: Hard coffee rock restricts deeper root growth. No root growth below water table.

Chemical: Low nutrient status and retention capacity, especially in the subsoil, limits root

growth.

Water holding capacity 40 mm in root zone (low).

Seedling emergence: Good.

Workability: Good. Soft surface is easily worked, although wetness limits accessibility.

Erosion Potential

Water: Low.

Wind: Moderately low to moderate.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P mg/kg	K	SO ₄ mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)				CEC cmol	Exchangeable Cations cmol(+)/kg				ESP	Exch Al cmol
											Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K		(+)/kg
Paddock	4.7	4.1	0	0.12	0.81	2.4	27	86	1	0.5	0.4	57	0.7	0.7	8.1	2.66	0.65	0.28	0.09	3.5	0.18
0-12	4.6	4.1	0	0.11	0.82	2.6	9	55	1	0.4	0.4	45	0.6	0.3	7.5	2.99	0.67	0.27	0.02	3.6	0.12
12-30	4.3	3.7	0	0.04	0.33	0.66	8	23	1	0.2	<0.1	13	<0.1	0.1	1.2	0.34	0.09	0.11	0.02	na	0.09
30-52	4.7	4.1	0	0.02	0.15	0.20	8	31	-	0.1	< 0.1	5	< 0.1	0.8	0.3	0.10	0.04	0.09	0.02	na	0.05
52-70	4.9	4.5	0	0.05	0.28	1.8	6	39	-	0.4	0.1	36	<0.1	0.1	7.8	0.56	0.14	0.22	0.02	2.8	2.05
70-95	5.0	4.8	0	0.06	0.26	0.67	5	39	-	0.4	< 0.1	18	< 0.1	0.1	3.3	0.18	0.11	0.16	0.02	4.8	0.63

Note: Paddock sample bulked from 20 cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC