GRADATIONAL RED CLAY

General Description: Friable medium to fine textured surface soil overlying a reddish

brown well structured clay, highly calcareous with depth, formed over

fine grained bedrock

Landform: Gently undulating to

undulating rises

Substrate: Medium to fine grained

basement rock, strongly

calcified

Vegetation: Blue gum woodland

Type Site: Site No.: CM037

1:50,000 sheet:6630-2 (Apoinga)Hundred:HansonAnnual rainfall:450 mmSampling date:20/05/93Landform:Upper slope of a very gently undulating rise, 1% slope

Surface: Self-mulching with minor ironstone gravel

Soil Description:

Depth (cm)

0-10	Dark red friable medium clay with blocky structure. Clear to:
10-30	Dark red heavy clay with strong prismatic breaking to blocky structure. Diffuse to:

Description

30-60 Dark red medium clay with strong blocky

structure. Clear to:

Yellowish red highly calcareous light medium

clay with weak polyhedral structure, 20-50% soft carbonate segregations and about 10% sandstone

fragments. Gradual to:

90-130 Red highly calcareous light medium clay with

weak polyhedral structure, 20-50% soft carbonate segregations and up to 50% sandstone fragments.

Gradual to:

130-140 Weathering ferruginized fine sandstone.

Classification: Haplic, Hypercalcic, Red Dermosol; medium, non-gravelly, clayey / clayey, deep

Summary of Properties

Drainage The soil is moderately well drained and is unlikely to remain wet for more than a

week at a time.

Fertility The soil has a very high level of natural fertility, as indicated by the exchangeable

cation data. Organic carbon and phosphorus are also high, indicating good surface

nutrition.

pH Slightly acidic at the surface, becoming alkaline with depth.

Rooting depth 90 cm in sampling pit.

Barriers to root growth

Physical: There are no physical barriers above the weathering rock, which would limit the

rooting depth if it occurred within a metre of the surface.

Chemical: There are no apparent chemical barriers to root growth.

Water holding capacity Approximately 140 mm in root zone.

Seedling emergence Good.

Workability Good.

Erosion Potential

Water: Low.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	%	Avail. P mg/kg	K	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol (+)/kg	Exc	ESP				
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K	
Paddock	6.0	5.7	0	0.13	0.68	2.7	50	950	-	2.5	1.5	51	35.9	0.5	24.1	13.45	3.45	0.21	2.40	0.9
0-10	6.5	6.4	0	0.17	0.76	2.5	36	1103	-	2.6	1.4	25	26.8	0.4	30.8	20.47	3.98	0.22	3.10	0.7
10-30	6.9	6.7	0	0.08	0.28	1.3	9	875	-	3.9	1.2	10	11.6	0.2	34.7	23.33	4.33	0.28	2.74	0.8
30-60	7.9	7.6	0.2	0.12	0.23	0.8	4	368	-	3.1	1.1	7	3.6	< 0.1	39.9	27.43	6.16	0.46	1.24	1.2
60-90	8.3	7.9	41.4	0.15	0.33	0.3	6	210	-	2.4	0.7	5	1.9	< 0.1	23.7	16.18	5.50	0.50	0.73	2.1
90-130	8.6	8.0	35.7	0.17	0.36	0.4	4	281	-	3.5	0.6	5	2.0	< 0.1	21.0	12.06	6.77	0.96	0.81	4.6

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.