GRADATIONAL RED CLAY LOAM

General Description: Well structured dark reddish brown clay loam to light clay overlying

a very coarsely structured red heavy clay containing soft carbonate

segregations with depth

Landform: Gently to moderately sloping

alluvial fans.

Substrate: Reddish clayey sediments

with variable colluvial gravel

Type Site: Site No.: CM051

1:50,000 sheet:6630-1 (Burra)Hundred:KingstonAnnual rainfall:450 mmSampling date:02/08/94Landform:Midslope of a moderately inclined alluvial fan, slope 4%

Surface: Firm with minor quartz and shale gravel

Soil Description:

Depth (cm) Description

0-10 Dark reddish brown clay loam with moderate

granular structure. Abrupt to:

10-23 Dark reddish brown medium clay with strong fine

polyhedral structure and 2-10% shale gravel.

Abrupt to:

Dark reddish brown very firm heavy clay with

strong very coarse prismatic structure and minor

quartz gravel. Gradual to:

Red very firm medium heavy clay with strong

blocky structure, 20-50% soft calcareous segregations and 2-10% shale gravel. Diffuse to:

90-130 Red very firm medium heavy clay with strong

blocky structure, 20-50% soft calcareous segregations and 20-50% shale gravel.

Classification: Vertic, Hypercalcic, Red Dermosol; medium, non-gravelly, clay loamy / clayey, deep

Summary of Properties

Drainage Moderate. The clayey soil prevents free drainage of water and some layers are prone

to saturation for periods of a week or so following rain.

Fertility Natural fertility is high. Phosphorus is marginal, organic carbon (therefore nitrogen

reserves) is good. Sulphur and probably zinc should be monitored closely.

pH Slightly acidic at the surface, strongly alkaline with depth.

Rooting depth 110 cm in pit, but very few roots below 60 cm.

Barriers to root growth

Physical: Tight sodic clay subsoil inhibits good root proliferation.

Chemical: High pH (more than 9.2) restricts root growth below 60 cm.

Water holding capacity Approximately 150 mm, but effectively about 90 mm due to low root densities below

60 cm.

Seedling emergence Fair to good. Surface may become sticky after rain and have a limited moisture range

for effective working. Gypsum may help.

Workability Fair to good. Relies on high organic matter levels to maintain surface structure.

Erosion Potential

Water: Moderately low, due to the slope of the land.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃	EC1:5 dS/m	ECe dS/m	Org.C %						nents n	ng/kg	CEC cmol (+)/kg	Exchangeable Cations cmol(+)/kg				ESP	Ext Al mg/kg	
							mg/Rg	mg/kg			Cu	Fe	Mn	Zn	(1)/115	Ca	Mg	Na	K		g/ Ng
Paddock	6.6	5.8	0	0.09	0.88	2.0	30	433	8.3	1.1	1	-	-	-	11.2	6.94	1.74	0.12	1.10	1.1	-
0-10	5.7	4.9	0	0.13	1.07	2.5	67	449	8.6	4.0	1	-	-	-	12.1	5.76	1.72	0.13	1.22	1.1	1.7
10-23	6.9	6.2	0	0.07	0.60	0.8	7	344	4.7	1.1	1	-	-	-	16.2	7.85	4.33	0.32	0.86	2.0	-
23-60	8.7	7.7	1.1	0.16	0.50	0.5	2	425	3.9	1.4	-	-	-	-	28.3	15.1	14.2	2.14	1.42	7.6	-
60-90	9.3	8.3	23.3	0.25	0.77	0.2	2	315	8.7	6.4	-	-	-	-	17.4	5.92	12.6	2.50	0.86	14.4	-
90-130	9.6	8.4	18.7	0.32	0.72	0.1	3	341	7.1	8.4	-	-	-	-	21.2	4.27	13.2	5.30	0.96	25.0	-

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.