LOAM OVER RED CLAY ON ROCK

General Description: Hard loamy surface soil up to 50 cm thick, over a red clay

grading to weathering fine grained rock within 150 cm of the

surface

Landform: Slopes of undulating to

rolling low hills.

Substrate: Fine grained basement rock

(siltstone, slate).

Type Site: Site No.: CM098

1:50,000 sheet: 6630-3 (Clare) Hundred: Clare

Annual rainfall: 650 mm Sampling date: 12/05/04

Landform: Upper slope in landscape of undulating low hills, 5% slope

Surface: Hard setting with negligible stone.

Soil Description:

Depth (cm) Description

0-10 Dark reddish brown massive friable silty loam

with 2-10% siltstone gravel (6-20 mm). Gradual

to:

10-25 Reddish brown with light reddish brown blotches

firm massive silty loam with 2-10% siltstone

gravel (6-20 mm). Clear to:

25-45 Pink (bleached) hard massive silty loam with 2-

10% siltstone gravel and 2-10% quartz gravel

(both 6-20 mm). Abrupt to:

45-80 Dark reddish brown, dark greyish brown and

yellowish brown very hard medium heavy clay with coarse prismatic breaking to strong medium

angular blocky structure. Diffuse to:

80-110 Reddish yellow, brownish yellow and yellowish

red hard medium clay with strong medium angular blocky structure, 20-50% siltstone fragments and up to 2% fine carbonate

segregations. Diffuse to:

110-140 Weathering siltstone.

Classification: Hypocalcic, Subnatric, Red Sodosol; thick, slightly gravelly, silty / clayey, deep

Summary of Properties

Drainage: Moderately well drained. The subsoil clay restricts water movement to the extent that

saturation of part of the profile is likely for periods of up to a week following heavy

or prolonged rainfall.

Fertility: Inherent fertility is moderate as indicated by the exchangeable cation data. Surface

soil nutrient retention capacity is boosted by high organic carbon levels, but subsurface layers (10-45 cm) have relatively poor capacity. This soil is not prone to

any specific nutrient deficiencies, apart from nitrogen and phosphorus.

pH: Neutral throughout.

Rooting depth: 110 cm in pit, but few roots below 80 cm.

Barriers to root growth:

Physical: The tight clayey subsoil restricts root growth to some extent.

Chemical: There are no apparent chemical barriers.

Water holding capacity: Approximately 110 cm (total available) for annual crop and pasture plants.

Approximately 55 mm (readily available) in potential grape vine rootzone of 80 cm.

Seedling emergence: Fair to good, depending on condition of surface.

Workability: Fair – surface tends to puddle when wet and shatter if worked too dry.

Erosion Potential

Water: Moderate, due to ground slope and erodible nature of surface soil.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃	EC 1:5	ECe dS/m	Cl mg/kg		P	Avail. K	SO ₄ mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)				Sum cations	Exchangeable Cations cmol(+)/kg				ESP
				dS/m				mg/kg	mg/kg			Cu	Fe	Mn	Zn	cmol (+)/kg	Ca	Mg	Na	K	
0-10	7.3	6.6	0	0.10	0.333	5	2.24	37	427	9.1	0.9	-	1	-	-	11.5	8.69	1.49	0.35	0.99	3.0
10-25	6.6	6.0	0	0.066	0.663	30	0.89	6	231	5.7	0.4	1	- 1	-	-	6.2	4.74	0.87	0.28	0.35	4.5
25-45	6.7	5.3	0	0.038	0.212	7	0.74	13	146	8.6	0.4	1	-	-	-	6.4	4.04	1.69	0.41	0.25	6.4
45-80	6.9	5.5	0	0.093	0.465	2	0.69	4	184	17	1.0	1	-	-	-	22.0	7.74	11.3	2.47	0.51	11.2
80-110	7.2	6.1	0	0.16	0.396	25	0.52	9	220	21	0.9	-		-	-	20.4	7.70	9.69	2.46	0.56	12.1
110-140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: Sum of cations is an estimate of cation exchange capacity, a measure of the soil's capacity to store and release nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the sum of cations.