SANDY LOAM OVER POORLY STRUCTURED DARK CLAY

General Description: Greyish sandy loam surface soil, paler coloured with depth, overlying a

dark coloured, sometimes mottled clayey subsoil which is calcareous

with depth

Landform: Alluvial flats and terraces

Substrate Alluvial sandy clays to clays

Vegetation: Red gum woodland

Type Site: Site No.: CU016

1:50,000 sheet: 6531-1 (Laura) Hundred: Booyoolie Annual rainfall: 455 mm Sampling date: 31/08/92

Landform: Alluvial flat of the Rocky River, 0% slope

Surface: Hard setting with no stones

Soil Description:

Depth (cm) Description

0-10 Dark brown weakly granular sandy loam. Clear to:

10-30 Pale grey massive light sandy clay loam. Clear to:

30-85 Very dark grey medium clay with strong blocky

structure. Gradual to:

85-130 Very dark grey medium clay with strong prismatic

structure and minor soft carbonate segregations and

gypsum crystals.

Classification: Hypocalcic, Subnatric, Black Sodosol; thick, non-gravelly, loamy / clayey, deep

Summary of Properties

Drainage Moderately well to imperfect, due to low permeability subsoil clay (sodic) and

seasonally high ground water table. Soil may remain wet for several weeks.

Fertility Natural fertility is moderate to high, as indicated by the high CEC of the subsoil. The

surface soil has low clay and organic matter content (resulting in a low CEC), and therefore has a low nutrient retention capacity and has low nitrogen reserves.

pH Acidic at the surface grading to slightly alkaline in the subsoil.

Rooting depth 130 cm in the pit, but there is little growth below 85 cm.

Barriers to root growth

Physical: The strength of the subsoil clay, caused by its high exchangeable sodium, may restrict

root proliferation, as will the hard dense surface soil.

Chemical: Moderate salinity and high sodicity below 85 cm may affect root growth.

Water holding capacity 155 mm in rootzone (high), but a third of this may be unavailable to roots due to their

sparse distribution.

Seedling emergence Good to fair, as surface soil may seal over due to poor structure caused by low organic

matter content and sodic clay.

Workability Fair due to narrow moisture range for effective working due to poor structure.

Erosion Potential

Water: Low due to flatness of land.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 ECe Org.C AvaidS/m dS/m % P				Avail. K mg/kg	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)				CEC cmol (+)/kg	Exchangeable Cations cmol(+)/kg				ESP
							mg/Kg	mg/kg			Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K	
Paddock	6.0	5.5	0	0.07	0.32	1.1	47	387	-	1.4	0.4	116	12	1.3	5.6	3.6	0.6	0.23	0.59	4.1
0-10	5.8	5.3	0	0.06	0.21	1.1	50	640	-	0.9	0.6	137	13	1.4	4.9	3.2	0.5	0.21	0.71	4.3
10-30	6.2	5.8	0	0.05	0.20	0.4	21	913	-	0.7	0.9	57	8.5	0.2	5.8	4.2	0.9	0.19	0.32	3.3
30-85	7.7	6.9	0	0.12	0.50	0.7	<5	348	-	3.3	1.7	34	11	0.1	26.7	11.9	8.9	3.71	0.72	14
85-130	7.9	7.8	0.4	1.9	6.02	0.7	22	424	-	6.6	1.3	18	2.0	0.2	33.1	15.1	10.9	7.17	1.00	22

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.