DARK CRACKING CLAY

General Description: Dark brown well structured calcareous clay becoming coarser structured and more calcareous with depth. Cracks seasonally.

Landform:	Gentle slopes an	d flats			· 6.	4
Substrate:	Heavy clay, usua calcified, probab on the bed of an	ully ly laid down ancient lake				
Vegetation:	Grassland					
Type Site:	Site No.:	CU017				
	1:50,000 sheet: Annual rainfall: Landform:	6531-1 (Lau 500 mm Midslope of	ra) a long gentle s	Hundred: Sampling date:	Booyoolie 31/08/92	

Weakly self mulching, seasonally cracking with no stones

Soil Description:

Surface:

Depth (cm)	Description	
0-10	Dark reddish brown strongly granular moderately calcareous light medium clay. Clear to:	
10-30	Dark reddish brown moderately calcareous medium heavy clay with strong polyhedral structure. Gradual to:	
30-55	Black slightly calcareous light medium clay with strong polyhedral structure. Gradual to:	
55-90	Dark brown heavy clay with strong lenticular structure and slickensides (smooth clay faces). Diffuse to:	
90-135	Black slightly calcareous medium heavy clay with moderate blocky structure. Clear to:	
135-150	Yellowish red highly calcareous heavy clay with 10% soft carbonate segregations and strong blocky structure. (Pleistocene age Hindmarsh Clay equivalent).	

Classification: Epicalcareous, Self-mulching, Black Vertosol; non-gravelly, fine / very fine, deep

Summary of Properties

Drainage	Imperfect, due to high clay content of soil. Soil may remain wet for several weeks.								
Fertility	High natural fertility, as indicated by the high CEC values. There are no measured surface soil deficiencies, but zinc deficiency is common. Organic carbon is very high, indicating a good store of nitrogen.								
рН	Moderately alkaline throughout. Strongly alkaline in red clay below soil.								
Rooting depth	135 cm at type site, with good distribution in all layers.								
Barriers to root growth									
Physical:	There are no physical barriers.								
Chemical:	High boron and sodicity (as in red clay layer) affect root growth, but unless they are shallower than 100 cm, no problem is likely.								
Water holding capacity	200 mm in root zone (very high), and most is available to plant roots.								
Seedling emergence	Good.								
Workability	Fair to good, depending on the wetness of the surface. Clay soils are sticky when wet.								
Erosion Potential									
Water:	Moderately low, due to well structured surface soil and low angle slope.								
Wind:	Low.								

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO3 %	EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P mg/kg	Avail. K	SO ₄ -S mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol	Exc	ESP				
							mg/κg	ing/κg			Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K	
Paddock	7.9	7.8	2.3	0.17	0.68	2.2	25	763	-	2.3	1.2	16	7.5	0.8	37.3	31.1	3.1	0.44	2.31	1.2
0-10	8.0	7.8	3.2	0.16	0.63	2.0	14	765	-	2.3	1.3	14	9.4	0.8	34.9	31.3	3.1	0.36	2.18	1.0
10-30	8.1	7.9	4.5	0.13	0.38	1.2	<5	444	-	1.9	1.5	15	5.2	0.3	34.1	31.1	3.4	0.39	1.22	1.1
30-55	8.1	7.8	0.1	0.11	0.33	1.3	5	1220	-	1.6	1.9	15	9.5	0.2	29.4	24.3	3.5	0.40	0.70	1.4
55-90	8.2	7.7	< 0.1	0.10	0.44	0.9	<5	316	-	1.9	1.6	17	6.5	0.2	28.6	22.8	6.5	1.41	0.89	4.9
90-135	8.7	8.0	2.2	0.22	0.47	0.8	<5	310	-	4.3	2.6	12	4.9	0.2	34.3	20.7	9.1	3.44	1.07	10.0
135-150	8.6	8.2	11.6	0.72	2.43	0.3	<5	349	-	20.3	1.1	13	2.2	0.1	30.1	17.8	7.5	6.48	1.04	21.5

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.