SANDY CLAY LOAM OVER GRAVELLY RED CLAY

General Description: Gravelly sandy loam to sandy clay loam, overlying a very stony, reddish brown well structured clay subsoil, calcareous with depth

Landform: Gently inclined slopes below

rocky hills

Substrate: Very stony (mostly quartzite)

medium to fine grained local

outwash sediments

Vegetation:

Type Site: Site No.: CU019

1:50,000 sheet: 6531-4 (Pirie) Hundred: Napperby
Annual rainfall: 400 mm Sampling date: 16/12/92
Landform: Upper slope of a gently inclined alluvial fan, 6% slope
Surface: Hard setting with 20% quartzite stones (60 mm)

Soil Description:

Depth (cm) Description

0-10 Dark reddish brown massive sandy clay loam with

10% quartzite stones (20-60 mm). Abrupt to:

10-35 Dark reddish brown medium heavy clay with

strong polyhedral structure and 65% quartzite

stones (20-60 mm). Gradual to:

Red medium heavy clay with strong polyhedral

structure and 65% quartzite stones (20-60 mm).

Clear to:

65-90 Red medium clay with strong polyhedral

structure, 75% quartzite stones (20-60 mm), and

20% soft calcareous segregations (Class I

carbonate). Gradual to:

90-140 Reddish brown, soft, massive, highly calcareous

light sandy clay loam, with 25% quartzite stones

(20-60 mm), and 10% soft carbonate segregations.

Classification: Haplic, Calcic, Red Chromosol; medium, gravelly, clay loamy / clayey, moderate

Summary of Properties

Drainage Well drained. Soil is unlikely to remain wet for more than a few days.

Fertility Natural fertility is high, as indicated by the high CEC value in the clay subsoil. Low

organic matter content however reduces the capacity of the surface soil to retain

nutrients.

pH Slightly acidic at surface, alkaline with depth.

Rooting depth 140 cm in pit, but few roots below 90 cm.

Barriers to root growth

Physical: Heavy stone layers may impede root penetration.

Chemical: Class I carbonate layer. Salt and boron are not significant.

Water holding capacity 60 mm. High stone content and poor root distribution at depth are responsible for the

moderately low value.

Seedling emergence Fair due to hard setting, sealing surface.

Workability Fair to poor due to narrow moisture range for effective working, and abrasive effects

of extensive surface quartzite.

Erosion Potential

Water: Moderate (6% slope).

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	%	Avail. P mg/kg	K	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			CEC cmol (+)/kg	Exchangeable Cations cmol(+)/kg				ESP	
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K	
Paddock	6.6	6.0	1	0.05	0.29	0.5	47	330	-	1.4	-	-	-	1	8.4	6.90	1.32	0.34	0.79	4.0
0-10	6.9	6.6	0	0.09	0.36	0.8	33	470	-	1.4	-	-	-	-	8.9	7.69	1.31	0.10	1.09	1.1
10-35	6.4	5.8	1	0.04	0.23	0.4	7	250	-	2.7	-	-	-	1	17.6	12.4	5.01	0.23	0.77	1.3
35-65	6.6	6.1	1	0.07	0.29	0.3	5	200	-	3.9	-	-	-	1	24.8	18.1	8.25	0.36	0.85	1.5
65-90	8.3	7.8	8	0.17	0.56	0.1	<2	270	-	2.9	-	-	-	-	21.1	15.7	6.30	0.32	0.85	1.5
90-140	8.7	8.1	10	0.18	0.59	<0.1	<2	380	-	2.5	-	-	-	-	17.7	9.06	8.77	0.86	1.09	4.9

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.