LOAM OVER WELL STRUCTURED RED CLAY

General Description: Loamy to clay loamy stony surface soil overlying a dark reddish

brown stony clay subsoil with abundant carbonate at depth, grading

to very stony medium to fine grained alluvium

Landform: Upper slopes of quartz stony

pediments

Substrate: Very stony (quartzite) sandy

clay loam to sandy clay sediments (Telford Gravel)

Vegetation:

Type Site: Site No.: CU030

1:50,000 sheet: 6632-3 (Pekina) Hundred: Pekina Annual rainfall: 400 mm Sampling date: 03/11/93

Landform: Upper slope of pediment, 4% slope Surface: Hard setting with 10-20% quartzite stone

Soil Description:

Depth (cm) Description

0-10 Dark reddish brown fine sandy clay loam with

weak granular structure and 2-10% quartz gravel.

Abrupt to:

10-25 Dark reddish brown medium heavy clay with

strong coarse blocky structure and 2-10%

quartzite stones. Clear to:

25-45 Dark reddish brown medium heavy clay with

strong coarse blocky structure and 2-10%

quartzite stones. Clear to:

45-80 Red very highly calcareous massive light medium

clay with 10-20% calcrete and quartzite stones and more than 20% soft carbonate segregations.

Diffuse to:

80-140 Red highly calcareous massive sandy medium

clay with more than 50% quartzite and calcrete stones (Telford Gravel Formation). Clear to:

140-150 Weathering shale.

Classification: Sodic, Hypercalcic, Red Chromosol; medium, gravelly, clay loamy / clayey, deep

Summary of Properties

Drainage: Moderately well drained. The slope of the land and the structure of the soil are such

that waterlogging is unlikely to be a problem.

Chemical fertility: The surface soil has a high nutrient retention capacity (due the clay and organic matter

content), and a very high capacity in the subsoil due to the calcium saturated clay. The

soil is well supplied with nutrients, although phosphorus is low.

pH: Slightly acidic at the surface, alkaline with depth.

Root depth: 80 cm in pit.

Barriers to root growth

Physical: Heavy stone and rock at base of the soil limit root growth.

Chemical: There are no apparent chemical barriers.

Water holding capacity: Approximately 100 mm in root zone (very high).

Seedling emergence: Good, provided surface condition is maintained.

Workability: Fair to good, depending on stone coverage (tyne wear) and surface condition.

Erosion potential:

Water: Water erosion potential is moderate, due to the slope. The soil itself is relatively

resistant to erosion.

Low: Wind erosion potential is low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃	EC1:5 dS/m	ECe dS/m	%	Avail. P mg/kg	K	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			ng/kg	CEC cmol (+)/kg	Exchangeable Cations cmol(+)/kg				ESP
							mg/kg	1116/116			Cu	Fe	Mn	Zn	(1)/116	Ca	Mg	Na	K	
Paddock	6.3	6.1	0	0.11	0.64	1.9	16	704	-	1.9	1.0	15	37	0.7	14.9	10.75	2.15	0.30	2.38	2.0
0-10	6.4	6.2	0	0.12	0.76	2.0	20	753	-	2.1	1.1	18	38	0.7	15.1	11.38	2.30	0.27	2.58	1.8
10-25	6.5	6.0	0	0.04	0.19	1.1	7	475	-	2.2	1.4	8	18	0.3	19.0	13.99	3.13	0.34	1.86	1.8
25-45	7.2	6.9	0.1	0.06	0.19	1.0	<4	356	-	2.7	1.2	6	6.5	0.2	33.9	27.75	6.32	0.63	1.81	1.9
45-80	8.4	7.9	26.7	0.12	0.31	0.5	<4	239	-	2.0	0.9	4	2.7	0.3	22.5	18.53	4.85	0.60	0.98	2.7
80-140	8.7	8.1	33.9	0.16	0.37	0.1	<4	326	-	2.3	0.6	4	1.8	0.3	20.8	12.21	8.98	1.32	1.26	6.3

Note: Paddock sample bulked from cores (0-10 cm) taken around the pit.

CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.