SANDY LOAM OVER DISPERSIVE RED CLAY ON ROCK

General Description: Hard quartitie gravelly sandy loam abruptly overlying a

coarsely structured and dispersive red clay, calcareous with

depth, grading to weathering basement rock

Landform: Undulating to rolling rises

and low hills.

Substrate: Basement quartzite, mantled

by secondary carbonate.

Type Site: Site No.: CU902

1:50,000 sheet: 6631-2 (Hallett) Hundred: Hallett
Annual rainfall: 425 mm Sampling date: 21/03/00
Landform: Upper slope of a gently undulating rise, 3% slope
Surface: Hard setting with 10-20% quartzite stones (20-60 mm)

Soil Description:

50-85

Depth (cm) Description

0-10 Dark reddish brown hard massive sandy loam

with 2-10% quartzite gravel (6-20 mm). Clear to:

10-19 Yellowish red very hard massive sandy loam with

 $2\mbox{-}10\%$ quartzite gravel (6-20 mm). Clear to:

19-50 Dusky red very hard medium heavy clay with

strong coarse prismatic structure and 2-10% quartzite gravel (6-20 mm). Gradual to:

Dark red hard massive highly calcareous medium clay with more than 50% quartzite gravel (6-60

mm). Gradual to:

85-120 Reddish yellow hard massive highly calcareous

light clay with 20-50% quartzite gravel (20-60 mm) and 20-50% fine carbonate segregations.

Gradual to:

120-140 Weathering quartzite.

Classification: Hypercalcic, Subnatric, Red Sodosol; medium, gravelly, loamy / clayey, deep

Summary of Properties

Drainage: Moderately well drained. Water perches on the dispersive clayey subsoil for up to a

week following heavy or prolonged rainfall.

Fertility: Inherent fertility is moderate. Nutrient retention capacity is sub-optimal due to

relatively low clay content, acidification and marginally low organic matter levels of

surface soil. Sulphur concentrations are also low in the surface.

pH: Acidic at the surface, alkaline with depth.

Rooting depth: 85 cm in pit, but few roots below 50 cm.

Barriers to root growth:

Physical: The hard coarsely structured clay does not prevent root growth, but it causes reduced

density as roots are forced around aggregates, with few penetrating inside.

Chemical: Deep subsoil analyses unavailable, but likely causes of root restriction are sodicity

and highly calcareous clay.

Water holding capacity: Approximately 65 mm in the root zone.

Seedling emergence: Fair. Hard setting, sealing surface affects emergence percentage.

Workability: Fair. Surface tends to shatter if worked too dry, and puddle if worked too wet.

Erosion Potential

Water: Moderately low.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃	EC1:5 dS/m	ECe dS/m	%	P	Avail. K mg/kg	mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)				Sum cations cmol	Exchangeable Cations cmol(+)/kg				ESP	Ext Al mg/kg
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K		mg/kg
0-10	5.7	4.9	1	0.06	1	1.07	33	409	3.8	0.8	- 1	-	-	- 1	6.4	4.23	1.12	0.16	0.85	2.5	3.32
10-19	6.3	5.5	1	0.04	1	-	-	-	-	0.7	- 1	-	-	- 1	6.2	3.88	1.30	0.35	0.69	5.6	-
19-50	7.8	6.9	-	0.14	-	-	-	-	-	2.2	-	-	-	-	28.6	13.2	10.4	3.58	1.52	12.5	-
50-85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
85-120	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: Sum of cations is an estimate of CEC (cation exchange capacity), a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the estimated CEC.