HARD GRADATIONAL RED CLAY

(Clayey red brown earth)

General Description: Hard clay loam to light clay grading to a red coarsely structured clay, calcareous with depth

Landform: Gently undulating rises.

No landscape image available

Vegetation:

Type Site: Site No.: EL033

Tertiary clays

1:50,000 sheet: 6029-1 (Cockaleechie) Hundred: Brooker Annual rainfall: 390 mm Sampling date: 10/01/91

Landform: Gentle slope with some gilgai Surface: Hard setting with no stones

Soil Description:

Substrate:

Depth (cm) Description

0-5 Dark yellowish brown highly calcareous light medium clay with ironstone fragments. Clear to

5-90 Yellowish red very highly calcareous medium clay with ironstone fragments. Gradual to:

No profile image available

90-150 Brownish yellow slightly calcareous medium clay with ironstone fragments.

Classification: Sodic, Calcic, Red Dermosol; thin, non-gravelly, clayey / clayey, moderate

Summary of Properties

Drainage Moderately well to imperfectly drained. Soil may remain wet for a week or so

following heavy or prolonged rainfall.

Fertility Inherent fertility is high, as indicated by the exchangeable cation data, although

ironstone gravel ties up phosphorus. Zinc deficiencies can also be expected as is usual

on alkaline clays.

pH Alkaline throughout.

Rooting depth Not recorded. Estimate 90 cm in pit.

Barriers to root growth

Physical: The high strength clay prevents optimum root densities and distribution patterns.

Chemical: High sodicity from 90 cm restricts deeper root growth.

Water holding capacity Approximately 100 mm in the potential root zone, but low root densities reduce this

figure in practice.

Seedling emergence: Fair - hard surface soil impedes emergence.

Workability: Fair - surface soil becomes sticky and intractable when wet.

Erosion Potential

Water: Low.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂		EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P	Avail. K		Boron mg/kg	Trace Elements mg/kg (DTPA)				CEC cmol	Exchangeable Cations cmol(+)/kg				ESP
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
0-5	7.9	7.6	10	0.16	0.51	1.67	52	-	-	-	0.37	16.8	2.72	0.32	23.3	21.68	2.75	0.40	1.25	1.7
5-90	8.8	7.9	2	0.26	0.70	0.19	2	-	-	7.3	0.08	14.1	0.81	0.06	21.0	9.15	7.08	3.51	0.98	16.7
90-150	9.2	8.3	20	1.40	6.09	-	-	-	-	-	0.19	9.2	1.00	0.17	19.0	3.43	6.64	8.60	1.00	45.3

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC