HARD GRADATIONAL RED CLAY LOAM

(Clayey red brown earth)

General Description: Clay loam to light clay over a hard red coarsely structured clay, calcareous with depth

Landform: Gently undulating rises and

fans.

Substrate: Tertiary or Quaternary

Site No.:

clayey sediments.

1:50,000 sheet: 6029-1 (Cockaleechie) Hundred:

Annual rainfall: 410 mm Sampling date: Landform: Upper slope of gently inclined fan, 1% slope

Surface: Firm with no stones

EL086

Soil Description:

Vegetation:

Type Site:

Depth (cm) Description

0-10 Strong brown firm light clay with strong fine

subangular blocky structure and 2-10% ironstone

gravel (2-6 mm). Clear to:

10-25 Yellowish red hard medium clay with strong

coarse prismatic (breaking to fine angular blocky) structure and 10-20% ironstone gravel (2-6 mm).

Diffuse to:

25-36 Reddish brown and reddish yellow firm very

highly calcareous medium clay with moderate fine subangular blocky structure and 2-10% ironstone

gravel (2-6 mm). Gradual to:

36-57 Reddish yellow firm very highly calcareous

medium clay with moderate fine subangular blocky structure and 2-10% ironstone gravel (2-6

mm). Gradual to:

57-91 Yellow and red friable massive very highly

calcareous heavy clay. Gradual to:

91-130 Light yellowish brown and red friable massive

slightly calcareous heavy clay.

Classification: Sodic, Hypercalcic, Red Dermosol; medium, non-gravelly, clayey / clayey, deep

Shannon

30/09/93

No landscape image available

Summary of Properties

Drainage Well drained. The soil rarely remains wet for more than a couple of days following

heavy or prolonged rainfall.

Fertility Inherent fertility is high, as indicated by the exchangeable cation data. Nutrient

retention capacity, and measured nutrient status are both high. Organic carbon levels

are also satisfactory.

pH Alkaline at the surface, strongly alkaline with depth.

Rooting depth 91 cm in pit, but few roots below 57 cm.

Barriers to root growth

Physical: The coarsely structured clayey subsoil reduces root densities, but does not prevent

root growth.

Chemical: High pH from 57 cm limits deeper root growth.

Water holding capacity Approximately 75 mm in the root zone.

Seedling emergence: Fair to satisfactory, depending on the degree of surface sealing.

Workability: Fair. The surface is likely to become sticky when wet, limiting time for effective

cultivation.

Erosion Potential

Water: Low.

Wind: Low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃	EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P	vail. Avail. SO ₄ -S Boron mg/kg								Exchangeable Cations cmol(+)/kg				ESP
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
0-10	8.2	7.6	8	0.16	0.51	1.7	42	780	-	2.9	1.4	9	3.2	1.3	25.9	22.1	2.5	0.2	2.0	0.8
10-25	8.4	7.7	4	0.14	0.27	0.6	6	440	-	3.6	0.3	14	0.5	0.3	33.7	28.1	4.4	0.4	1.4	1.2
25-36	8.7	7.8	23	0.16	0.34	0.5	4	550	-	3.4	0.4	13	0.6	0.2	26.6	19.9	4.8	0.5	0.9	1.9
36-57	9.0	7.9	29	0.18	0.38	0.3	<4	390	-	3.1	0.4	18	1.0	0.1	20.2	12.7	5.3	1.1	1.0	5.4
57-91	9.3	8.0	26	0.26	0.56	0.4	<4	430	-	4.4	0.3	17	1.5	0.2	19.4	9.5	5.9	2.6	1.1	13.4
91-130	9.5	8.2	20	0.37	0.70	0.4	<4	580	-	6.9	0.2	14	0.8	0.1	19.2	7.4	7.1	4.7	1.4	24.5

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC