HIGHLY CALCAREOUS SANDY CLAY LOAM

(Calca soil)

General Description: Highly calcareous sandy loam to clay loam grading to a very highly

calcareous sandy loam to light clay with variable carbonate rubble

Landform: Undulating rises.

Substrate: Very highly calcareous

medium to fine grained wind blown material (Woorinen

Formation).

Vegetation: Mallee.

Type Site: Site No.: EW077

1:50,000 sheet: 5831-4 (Venus) Hundred: Witera Annual rainfall: 425 mm Sampling date: 30/03/93

Landform: Midslope of an undulating rise, 3% slope

Surface: Firm with no stones

Soil Description:

Depth (cm) Description

0-20 Dark brown very highly calcareous friable clay

loam with moderate fine subangular blocky

structure. Clear to:

20-100 Light brown very highly calcareous soft light

sandy clay loam with 20-50% carbonate

concretions (Class III B carbonate). Gradual to:

100-180 Pink very highly calcareous soft light clay with

20-50% carbonate concretions (Class III B

carbonate).

Classification: Hypervescent, Regolithic, Supracalcic Calcarosol; medium, non-gravelly, clay loamy / clayey,

deep

Summary of Properties

Drainage Moderately well drained. The soil never remains wet for more than a day or so

following heavy or prolonged rainfall.

Fertility Inherent fertility is moderate. High carbonate levels to the surface reduce availability

of phosphorus and trace elements. Regular phosphate applications are essential - levels are low at the sampling site. Nitrogen levels depend on legume content of

pasture and cropping history.

pH Alkaline at the surface, strongly alkaline with depth.

Rooting depth 180 cm in pit, but few roots below 100 cm.

Barriers to root growth

Physical: There are no physical barriers.

Chemical: High pH and high sodicity from 100 cm restrict deeper root growth.

Water holding capacity Approximately 110 mm in the root zone.

Seedling emergence: Satisfactory.

Workability: Firm surface is easily worked.

Erosion Potential

Water: Moderately low.

Wind: Moderately low.

Laboratory Data

Depth cm	pH H ₂ O	pH CaC1 ₂	CO ₃	EC1:5 dS/m		Org.C %	Avail. P		SO ₄ mg/kg		Trace Elements mg/kg (DTPA)				CEC cmol	Exchangeable Cations cmol(+)/kg				ESP
							mg/kg	mg/kg			Cu	Fe	Mn	Zn	(+)/kg	Ca	Mg	Na	K	
0-20	8.4	7.9	17	0.18	0.71	1.9	10	660	-	2.0	0.32	7.80	6.70	6.30	21.3	17.33	2.34	0.16	2.16	0.7
20-100	8.9	8.1	63	0.25	1.52	-	2	230	-	1.8	0.52	1.90	0.53	0.31	10.2	6.69	2.96	0.65	0.69	6.3
100-180	9.3	8.4	68	0.96	8.07	-	<2	310	-	4.3	0.14	0.80	0.34	0.45	7.8	1.56	4.08	1.97	0.86	25.2

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC