RED CLAY LOAM ON CALCRETED CALCARENITE

General Description: Red loam to clay loam grading to a well structured red clay on limestone or calcrete at shallow to moderate depth

Type Site: Site No.: SE009 1:50,000 sheet: 7023-2 (Penola) Hundred: Comaum Annual rainfall: 625 mm Sampling date: 12/10/92 Landform: Upper slope of low rise, 2% slope Surface: Firm with 2-10% calcrete (20-60 mm)

Soil Description:

Depth (cm)	Description	
0-12	Dark reddish brown friable clay loam with strong fine polyhedral structure and 2-10% calcrete stones (6-200 mm). Gradual to:	
12-31	Dark reddish brown friable clay loam with strong fine polyhedral structure and 20-50% calcrete fragments (60-200 mm). Gradual to:	
31-37	Dark reddish brown friable light clay with strong fine polyhedral structure and 2-10% calcrete stones (6-200 mm). Sharp to:	
37-140	Calcrete capped calcarenite.	

Classification: Haplic, Petrocalcic, Red Dermosol; thick, slightly gravelly, clay loamy / clayey, shallow

Summary of Properties

Drainage	Soil is well drained and rarely remains saturated for more than a day or so following heavy or prolonged rainfall.							
Fertility	Inherent fertility is high, as indicated by the exchangeable cation data. High calcium saturation and organic matter levels augment fertility. There are no apparent nutrient deficiencies.							
рН	Alkaline throughout.							
Rooting depth	Some root penetration into calcrete, but most growth is in the upper 37 cm.							
Barriers to root growth								
Physical:	The calcrete cap on the calcarenite is an effective root barrier.							
Chemical:	There are no chemical barriers.							
Water holding capacity	Approximately 75 mm in the root zone.							
Seedling emergence:	Satisfactory.							
Workability:	Firm surface is easily worked.							
Erosion Potential								
Water:	Low.							
Wind:	Low.							

Laboratory Data

Depth cm	pH H2O	pH CaC1 ₂	CO3 %	EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P	Avail. K	SO ₄ -S mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)			Trace Elements mg/kg (DTPA)			ements mg/kg CE DTPA) CT			Exchangeable Cations cmol(+)/kg			
							ш _б , к _б	ш _б /к _б			Cu	Fe	Mn	Zn	(1)/Kg	Ca	Mg	Na	K				
0-12	8.0	7.4	3.0	0.12	-	2.1	29	350	-	2.1	6.1	9.7	16	1.6	25.6	21.5	1.6	0.19	0.94	0.7			
12-31	8.1	7.4	1.8	0.12	-	1.2	6.4	140	-	2.1	0.25	12	11	0.78	21.3	20.3	0.8	0.36	0.46	1.7			
31-37	8.3	7.7	19.0	0.15	-	2.2	8.6	70	-	1.0	0.22	18	11	0.42	24.7	23.1	0.6	0.47	0.34	1.9			
37-140	8.8	7.8	96.2	0.09	0.24	< 0.1	< 4	28	-	0.6	0.4	1	1.3	0.2	1.1	1.92	0.08	0.14	0.06	na			

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC