SANDY LOAM OVER POORLY STRUCTURED BROWN CLAY

General Description: Medium thickness loamy sand to sandy loam with a compact bleached subsurface layer, overlying a red, brown and yellow mottled tough clay, calcareous with depth

and the second second

Landform:	Gently undulating low rises	
Substrate:	Heavy clay with soft carbonate (lime) accumulations	
Vegetation:	Eucalyptus leucoxylon (blue gum) woodland	

Type Site: Site No.: SE015 1:50,000 sheet: 7025-3 (Mundulla) Hundred: Wirrega Annual rainfall: 510 mm Sampling date: 17/03/93 Landform: Lower slope of low rise, 6% slope, adjacent to swampy flat Surface: Firm with no stones

Soil Description:

Depth (cm)	Description
0-15	Dark reddish brown massive light sandy loam. Clear to:
15-23	Pinkish grey massive light sandy loam. Sharp to:
23-45	Red, brown and orange mottled very firm heavy clay with strong coarse columnar structure. Gradual to:
45-55	Orange and dark brown mottled firm medium clay with strong coarse prismatic structure. Clear to:
55-85	Dark brown and pale yellow firm highly calcareous medium clay with strong coarse prismatic structure (Class I carbonate layer). Diffuse to:
85-120	Pale olive and yellowish brown mottled very firm heavy clay with strong very coarse prismatic structure and soft calcareous segregations.

Classification: Hypercalcic, Mottled-Mesonatric, Brown Sodosol; medium, non-gravelly, loamy/clayey, deep

Summary of Properties

Drainage	Imperfect due to slowly permeable subsoil. Water lies on top of the clay layer, saturating the lower part of the topsoil for weeks at a time during winter.						
Fertility	Moderately high inherent fertility, as indicated by the CEC value of the subsoil which has a reasonable capacity to store and release major plant nutrients. The light topsoil however has a much lower capacity, with most nutrient storage attributable to the organic matter. At the type site (not a farmed paddock), phosphorus is very low (natural levels), and subsoil zinc is also low.						
рН	Mildly acidic at the surface, becoming strongly alkaline with depth.						
Rooting depth	55 cm in pit (native grass roots).						
Barriers to root growth							
Physical:	The tough clay subsoil impedes root development. The bleached subsurface layer when saturated in winter restricts root growth, and forms a physical barrier when it becomes hard and dense on drying in spring time.						
Chemical:	The Class I carbonate layer (from 55 cm) impedes root growth. Subsoil zinc deficiency may also be a problem. Low levels of other nutrients are readily corrected by fertilizer applications.						
Water holding capacity	75 mm in root zone (moderate), but a portion of this is effectively unavailable due to sub-optimal root densities.						
Seedling emergence	Fair to good depending on the condition of the surface. Reduced organic matter levels will cause the surface to set hard, restricting seedling emergence.						
Workability	Fair to good, depending on organic matter levels. Excessive cultivation or stock trampling will destroy organic matter and induce a hard setting condition.						
Erosion Potential							
Water:	Moderately low to moderate, depending on the slope. The soil is highly erodible, so even gentle slopes are susceptible.						
Wind:	Moderately low, depending on the degree to which the surface has been pulverized.						

Laboratory Data

Depth cm	pH H2O	pH CaC1 ₂	CO ₃ %	EC1:5 dS/m	ECe dS/m	Org.C %	Avail. P	Avail. K	SO ₄ -S mg/kg	Boron mg/kg	Trace Elements mg/kg (DTPA)				CEC cmol	Exc	ESP			
							ing/κg	ing/κg			Cu	Fe	Mn	Zn	(+)/Kg	Ca	Mg	Na	K	
0-15	6.3	6.0	0	0.08	0.54	2.2	5	341	-	1.2	0.2	33	3.9	0.3	10.8	8.07	1.59	0.12	0.57	7.1
15-23	5.9	5.1	0	0.02	0.17	0.3	3	238	-	0.4	0.1	27	0.3	0.1	3.2	2.53	0.80	0.11	0.25	na
23-45	6.7	5.9	0	0.11	0.46	0.7	<4	1026	-	3.9	0.4	28	0.6	0.1	31.1	13.1	12.2	1.79	2.73	20.9
45-55	8.3	7.8	1	0.39	1.36	0.5	<4	1290	-	7.9	0.4	11	1.7	0.1	36.8	12.7	15.3	3.06	3.14	24.8
55-85	8.9	8.1	27	0.42	2.17	0.4	<4	921	-	8.5	0.4	7	0.7	0.3	23.9	7.74	11.9	2.62	1.98	25.6
85-120	9.2	8.4	19	0.65	2.84	0.3	<4	701	-	12.1	0.3	6	0.5	0.3	22.7	4.21	13.7	4.63	1.68	39.9

Note: CEC (cation exchange capacity) is a measure of the soil's capacity to store and release major nutrient elements. ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.