DEEP BLEACHED SILICEOUS SAND

Soil Description:

Depth (cm) Description

Classification: Basic, Petrocalcic, Bleached-Orthic Tenosol; medium, non-gravelly, sandy / sandy, deep

Summary of Properties

Drainage: Well drained. The bulk of the soil never remains wet for more than a day or so. However, seepage along the surface of the underlying calcrete can saturate the lower part of the profile for weeks to months depending on seasonal conditions.

Fertility:
pH:
Inherent fertility is very low, as indicated by the exchangeable cation data. There is little capacity for nutrient supply or retention due to the low clay content and degree of leaching. At sampling site, potassium and copper levels are low, but phosphorus concentration is satisfactory. Regular phosphorus and nitrogen applications are essential, with strategic trace element applications. Tissue testing for calcium and magnesium levels is also warranted.

Alkaline throughout, although surface values are higher than normal due to proximity to lime-surfaced road. Surface normally slightly acidic.

Rooting depth: $\quad 125 \mathrm{~cm}$ in the pit.

Barriers to root growth:

Physical: \quad The calcrete is the only physical barrier to root growth.
Chemical: There are no chemical limitations other than very low nutrient levels.
Water holding capacity: Up to 100 mm in the potential root zone (high).

Seedling emergence:

Workability: Sandy soils are easily worked, although compaction is likely if worked too wet.

Erosion Potential

Water: Low (except where water repellent).
Wind: \quad Moderate due to low strength, non-aggregated surface.

Laboratory Data

Depth cm	$\begin{gathered} \mathrm{pH} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{pH} \\ \mathrm{CaC} 1_{2} \end{array}\right\|$	$\begin{gathered} \mathrm{CO}_{3} \\ \% \end{gathered}$	$\begin{gathered} \text { EC } 1: 5 \\ \text { dS/m } \end{gathered}$	$\begin{gathered} \mathrm{ECe} \\ \mathrm{dS} / \mathrm{m} \end{gathered}$	$\begin{array}{\|c} \text { Org.C } \\ \% \end{array}$	Avail. P mg/kg	Avail. K $\mathrm{mg} / \mathrm{kg}$	Cl $\mathrm{mg} / \mathrm{kg}$	$\begin{aligned} & \mathrm{SO}_{4}-\mathrm{S} \\ & \mathrm{mg} / \mathrm{kg} \end{aligned}$	Boron $\mathrm{mg} / \mathrm{kg}$	Trace Elements mg/kg (DTPA)				Sum cations cmol (+)/kg	Exchangeable Cations cmol(+)/kg				$\begin{aligned} & \text { Est } \\ & \text { ESP } \end{aligned}$
												Cu	Fe	Zn	Mn		Ca	Mg	Na	K	
0-10	8.4	7.5	1.2\#	0.212	1.10	1.19	24	84	100	12.8	0.9	0.12	7.6	4.11	1.6	3.5	3.11	0.33	0.00	0.05	na
10-25	7.7	7.3	0	0.088	1.24	0.59	8	61	66	10.7	0.5	0.09	8.9	1.15	0.82	2.1	1.83	0.19	0.00	0.04	na
25-45	7.6	7.1	0	0.055	0.78	0.15	5	36	37	5.4	0.2	0.08	12	0.42	0.41	0.5	0.38	0.06	0.02	0.03	na
45-90	7.9	7.4	0	0.043	0.51	0.33	7	41	22	3.8	0.2	0.07	16	0.41	0.23	0.5	0.37	0.06	0.01	0.05	na
90-125	7.6	7.7	0	0.397	7.86	0.15	2	58	494	10.2	0.5	0.07	3.3	0.24	0.21	0.6	0.32	0.17	0.02	0.04	na
125-128	8.7	8.3	0.6	1.134	21.2	0.27	2	240	1190	37.8	2.4	0.09	6.4	0.36	0.45	3.3	1.84	1.18	0.03	0.25	0.9

Note: Sum of cations, in a neutral to alkaline soil, approximates the CEC (cation exchange capacity), a measure of the soil's capacity to store and release major nutrient elements.
ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC.
\# Road dust - surface is normally non calcareous and slightly acidic.

